Climate Change and Water in Greater LA

Alex Hall, PhD Director UCLA Center for Climate Science

www.ioes.ucla.edu/climate Twitter: @UCLACIiSci

UCLA Center for Climate Science

Loss of Snow

Adaptation Is Necessary Snow at April 1

Earlier Shift in Runoff Timing

Schwartz et al. 2018

Snowpack Severely Impacted During Drought

Ę

Berg and Hall 2017

What Happens During a Wet Year?

2016-2017

Huang et al. 2018

More Extremely Wet Years like 2016-2017

2016-2017 was an extremely wet year in California.

It produced a magnificent super bloom.

The abundant wintertime rain also stressed dams.

Swain et al. (2018) Increasing Precipitation Volatility in 21st Century California. Nature Climate Change. https://www.hcn.org/articles/p hotos-superbloom-incalifornia By William Croyle, California Department of Water Resources California Department of Water Resources

More Extremely Wet Years like 2016-2017

2016-2017 was an extremely wet year in California.

It produced a magnificent super bloom.

The abundant wintertime rain also stressed dams.

These types of years are projected to double in frequency by late-century.

Swain et al. (2018) Increasing Precipitation Volatility in 21st Century California. Nature Climate Change. https://www.hcn.org/articles/p hotos-superbloom-incalifornia By William Croyle, California Department of Water Resources California Department of Water Resources

More Extremely Dry Years Like 1976–1977

976–1977 was an extreme drought year in California.

Economic losses exceeded \$1 billion.

Swain et al. (2018) Increasing Precipitation Volatility in 21st Century California. Nature Climate Change.

http://framework.latimes.com/2014/06/23/1976-california-drought/

More Extremely Dry Years Like 1976–1977

1976–1977 was an extreme drought year in California.

Economic losses exceeded \$1 billion.

These types of years are also projected to double in frequency by late-century.

Swain et al. (2018) Increasing Precipitation Volatility in 21st Century California. Nature Climate Change.

http://framework.latimes.com/2014/06/23/1976-california-drought/

More Extremely Dry to Extremely Wet Years: "Whiplash"

More Extremely Dry to Extremely Wet Years: "Whiplash"

More Extremely Dry to Extremely Wet Years: "Whiplash"

Whiplash events could be up to 2x more frequent by late-century

Water Resource Impacts

Imported water

- Most water in the LA region is imported from the Sierra and the Colorado River.
- Sierra snowpack is a key component of the water storage system.
- Diminished snowpack means there's less springtime/summer snowmelt to keep reservoirs replenished.
- Earlier pulses of runoff are great challenges to water managers, who are trying to store as much water as possible in reservoirs while also preventing floods.
- Increased dry and wet extremes add to these challenges.

Water Resource Impacts

Local water

- Local water is currently an underutilized resource. Water managers are trying to make greater use of it through stormwater capture and other efforts.
- Increased extremes make stormwater capture more difficult.
- More frequent and intense wet extremes increase the risk of local flooding.
- Hotter temperatures increase water demand of agriculture and landscape vegetation.

A broader discussion of climate change impacts is available in the CA 4th Assessment's chapter on the LA region: www.climateassessment.ca.gov/regions

UCLA Center for Climate Science

www.ioes.ucla.edu/climate Twitter: @UCLACIiSci

More Manageable Changes Under Mitigation Snow at April 1

Business as Usual

Historical Data

70% 100% 36%

> Baseline 1981-2000

Mitigation